91高清自产国产拍,无码免费A级毛片大全,日本 欧美 国产中文字幕,99re热视频这里只有精品视频首页

3D Printing Hydroxyapatite ink

In stock
3D Printing Hydroxyapatite ink

Stock Information

Close
Item (SKU) Specifications Is In Stock Price Qty
D487563-5ml 5ml Out of Stock Stock Image

Basic Description

English Name 3D Printing Hydroxyapatite ink
synonyms 3D printing Hydroxylapatite ink, Durapatite, Hyperelastic bone, Hydroxylapatite, Calcium phosphate hydroxide, Hydroxyapatite
Storage Temp Store at 2-8°C
Shipped in Wet ice
General description

Description

This research grade (not for human use) Hydroxyapatite or Hyper elastic Bone 3D-printing ink can be used for printing using a direct extrusion (pneumatic or mechanical) 3D-printer into multi-layered, three-dimensional objects at room temperature. This ink should only be used in a well-ventilated environment. The extruded material rapidly solidifies and allows creation of complex, user-designed forms. Despite being mostly hydroxyapatite, the printed solid material is flexible (may even have limited elastic properties). The solids loading of the as-dried material is 85 vol.% hydroxyapatite, 15 vol.% PLGA. This Hyper elastic Bone ink can be utilized to create three-dimensional structures on their own, or co-3D-printed with other 3D-printing inks to create multi-material structures. The ink may also be mixed with other 3D-printing inks to compound them prior to utilization. Due to the mechanical flexibility of the material after drying, complex 2D and 3D forms can be created. This ink may also be utilized in non-3D-printing applications such as coating (dip-coating or direct painting), thread fabrication, or casting into molds.Our Hyper elastic Bone 3D-printing ink is comprised of micron sized hydroxyapatite suspended in a mixture of organic solvents containing a dissolved, high molecular weight elastomeric, biocompatible polyester (polylactic-co-glycolic acid;PLGA). Prior to further use, to remove residual solvents after 3D-printing (or other application such as coating, direct painting etc) the composite material should be washed in 70% ethanol and then by water. The 3D-printed hydroxyapatite can be used as a flexible, bioactive, biocompatible ceramic composite or it can also be sintered (1500 °C recommended) in a non-oxidative atmosphere to yield Hyper elastic Bone parts. As sintered, Hyper elastic Bone is highly chemically and thermally stable, and can be used for a wide variety of high temperature applications. It also has numerous hard biological tissue (teeth and bone) applications, and can serve in it as as-printed, washed form as flexible ceramic composite cell scaffold, or in its sintered form, as a rigid ceramic scaffold/implant. In its 3D-printed, flexible form, Hyper elastic Bone has been shown to be highly osteoconductive, and osteogenic, capable of differentiation adult human stem cells into osteoblast-like cells.

Description

This research grade (not for human use) Hydroxyapatite or Hyper elastic Bone 3D-printing ink can be used for printing using a direct extrusion (pneumatic or mechanical) 3D-printer into multi-layered, three-dimensional objects at room temperature. This ink should only be used in a well-ventilated environment. The extruded material rapidly solidifies and allows creation of complex, user-designed forms. Despite being mostly hydroxyapatite, the printed solid material is flexible (may even have limited elastic properties). The solids loading of the as-dried material is 85 vol.% hydroxyapatite, 15 vol.% PLGA. This Hyper elastic Bone ink can be utilized to create three-dimensional structures on their own, or co-3D-printed with other 3D-printing inks to create multi-material structures. The ink may also be mixed with other 3D-printing inks to compound them prior to utilization. Due to the mechanical flexibility of the material after drying, complex 2D and 3D forms can be created. This ink may also be utilized in non-3D-printing applications such as coating (dip-coating or direct painting), thread fabrication, or casting into molds.Our Hyper elastic Bone 3D-printing ink is comprised of micron sized hydroxyapatite suspended in a mixture of organic solvents containing a dissolved, high molecular weight elastomeric, biocompatible polyester (polylactic-co-glycolic acid;PLGA). Prior to further use, to remove residual solvents after 3D-printing (or other application such as coating, direct painting etc) the composite material should be washed in 70% ethanol and then by water. The 3D-printed hydroxyapatite can be used as a flexible, bioactive, biocompatible ceramic composite or it can also be sintered (1500 °C recommended) in a non-oxidative atmosphere to yield Hyper elastic Bone parts. As sintered, Hyper elastic Bone is highly chemically and thermally stable, and can be used for a wide variety of high temperature applications. It also has numerous hard biological tissue (teeth and bone) applications, and can serve in it as as-printed, washed form as flexible ceramic composite cell scaffold, or in its sintered form, as a rigid ceramic scaffold/implant. In its 3D-printed, flexible form, Hyper elastic Bone has been shown to be highly osteoconductive, and osteogenic, capable of differentiation adult human stem cells into osteoblast-like cells.

Document Information

Quality Inspection Report COA

Please input Lot number:


Product Questions

Product Questions

Sign In to submit question Hover me Please sign in to submit a question
No questions yet. Be the first to ask the question!

91高清自产国产拍,无码免费A级毛片大全,日本 欧美 国产中文字幕,99re热视频这里只有精品视频首页

品牌简介

{转码主词}